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THE PRESSURE ON A SPHERE WITH A DAMPING COATING WHEN 
A PLANE ACOUSTIC WAVE IS INCIDENT ON IT* 

L.E. PEKUROVSKII, V.B. PORUCHIKOV and YU.A. SOZONENKO 

In the problem on the interaction of an acoustic wave with a rigid sphere 
coated with a thin compressible layer /l/, the non-stationary pressure 
distribution on the sphere is found. Themethod of numerical inversion 
of the Laplace integral transform is used , together with asymptotic 
relations that hold in the case of a sufficiently thin coating. It is 
shown that the behaviour of the pressure is qualitatively different in 
the cases of a rigid sphere and a sphere with a coating. In the pressure- 
time dependence, successive series of oscillations are discovered, which 
are not seen with a rigid sphere, see /2, 3/. The pressure rise correspond- 
ing to the instant of interaction of the enveloping wave (the "Poisson 
spot" /4/) is displaced in time and in some cases exceeds twice the 
incident wave amplitude. 

1. Formulation of the problem. Laplace transform of the pressure. At the 
instant t = 0 let a plane acoustic wave of pressure pi, previously propagating through a 
homogeneous fluid at rest with initial pressure p,,density pO, and sound velocity cO, be in- 
cident on a rigid fixed sphere of radius a, coated with a thin damping layer of initial 
thickness ho, where h,< a. The origin of a system of spherical coordinates r,$,cp is at 
the centre of the sphere , the incident wave front is perpendicular to the s axisz(z = rcos cp), 
and the motion is in the negative direction of the axis. For simplicity, the incident wave 
is regarded as a step with a pressure drop pm 

We introduce the dimensionless pressure disturbances j and St, the time f, and coordinate 
r in accordance with the relations 

p_ P-PO Pi -PO 
PIII ’ Pi=-, i=+, FE+ 

P, 
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where p,pi, t,r are the corresponding dimensional quantities. 
Below, we omit the bar over dimensionless quantities. 
For the disturbance pS introduced by the sphere into the incident wave pressure field we 

have the relations /I/ 

The last boundary condition in (1.2), which models the presence of the damping coating, 
corresponds to the assumption of linear dependence of the layer thickness on the pressure, 
which is regarded as constant across the layer. Since th problem is linear, it can be referred 
to a sphere with r = 1. In additon, we neglect for simplicity the possibility of flows in 
the layer along the body surface (it was shown in /l/ that this can be done provided that the 
sound velocity in the fluid is much greater than the sound velocity in the compressible layer). 
The parameter y characterizes the softness of the layer (p,, c, are the density and sound 
velocity in the layer), in fact: if y- rx), the last boundary condition in (1.2) becomes 
p = comb (the condition on an absolutely soft body with given pressure at the boundary), 
while if y -* 0, it becomes the condition apI& = 0 on an absolutely rigid sphere. 

Applying the Laplace integral transformation with respect to time in system (1.2) and 
solving the resulting boundary value problem, we find 

C, (s, r) = I,+&/, (sr) - 
24#/, fs) - (1 + 2Y9) &+z,* (4 

2&,,* (4 - (9 + w? A,+ ,* _ 1 (4 
K=+v, (sr) 

(Re s> 0, I since pi = ps z 0 for t < 1 - r cos cp). 
Here, I,,+,,,(S), K,+,,,(s) are the mcdified Bessel functions of the first and third kinds 

respectively, and P,,(z) is a Legendre polynomial. 
Putting r = 1, we find the boundary value of p* on the sphere /l/ 

Using well-known relations for the Bessel functions /5/, we can write (1.3) in the 
shorter form 

It is not possible to obtain the exact form of the original from the image (1.4), so 
that a method-of numerical inversion of the transform will be given later in Para.3. In the 
meantime we consider some approximate methods whereby fairly simple relations, suitable for 
qualitative analysis, can be obtained for the pressure on the sphere. 

2. Approximate relations for the pressure. We consider the asymptotic expansion 
of the solution (1.3) fox an extremely soft coating as y-00. We write the original of 
(1.3) in the form 

PfG 19 ~)=~~~~~(~)~*(~os~) (2.1) 

P-2) 



d,(s)= \'ss I/:K,,+',,(s)x(s), x(s)== 1 - 
(K,,,,,, (,)/l/r)' 

Y=,,+I/~(~) 1/' 
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(2.3) 

Using the properties of the function K,+*J,(~), we can show that 
1) the integrand in (2.2) is an analytic function in the domain Res> 0, while in the 

remainder of the s plane it has noSingularities other than poles; 
2) the function To* (s) has three poles, one at the point s = 0 and the other two in 

the domain Re s< 0; the latter tendto s = 0 like ilJf7 as Y-w; 
3) for s>l, T,*(s) has n. + 2 poles, all located in the domain Res<O; 
4) depending on the value of v (OQy< m), the poles of T,*(s) (n> 0) may be either 

real or complex (in the latter case they come in conjugate pairs); 
5) n poles of T,*(s), as y-+ m, tend to zeros of K,,+(,, (s) (n> i), while the other two 

tend to the value s = 0 like 1/(n + 1)/y. 
Since the zeros of K,,+l/,(s)(n> 1) are at a finite distance from the imaginary axis (it 

can be shown thatthe distance is lower bounded uniformlywithrespect to n, i.e., Res,,( -1, 
where sm runs over the zeros of 

is of the order of est, 
K,+li,(s),(n> I)), their contributionto the pressure component 

T, (t) a> 1, provided that t is not too close to zero (t> to). 
Consequently, if the contour of integration with respect to s in (2.2) is deformed into the 
left half-plane, the main contribution to T,,(t) for large y and t> to will come from the 
residues at the remaining two poles, located near the point s = 0, and also from the residue 
at s=o when n=O. 

In the case when n = 0 the three poles of d,,(s) mentioned in Para. have the form, when 
y is large, 

so that 

T,(t)=i---exp(- &) [ (2.4j 

where the estimate is uniform with respect to t (O< t< co). 

If n> 1, then, since fsKn+li, (s) has no zeros in the neighbourhood of s = 0, the pair 
of complex conjugate roots of A, (s) in the neighbourhood of s = 0 is given as y- 00 by 
the equation 

x (s) = 0 (2.5) 

To solve this equation, we use the asymptotic form as s+O of the cylindrical functions 

/5/: 

K,(+~(+)‘[i+(+)a&] + ~(+-v)+~(sy)? v>l 
(2.6) 

Substituting (2.6) into (2.5), we can find the expressions for the required roots of 
A, (s) with n > 1 and y-co: 

Sri = - x (n + 1)” 

.P+w (n + I/*) yn+1 
[ I+ o($] t 

.- 
v -y [I- 2y(2;L1) +0(+&j 

As remarked above, the remaining n poles tend, as y-m, to the zeros of 
a result, using (2.21, we find by the theorem of residues 

T,(t)=% e-‘+ 

3enp(-~)[~si~I/%f-~e~~1/Ff+o(~)] 

T,(t)=--_~xp(-_~t)(cos~t +l/Fisin!$t) + 

~exp(-~)[cos~~t+o(~j] 

T,(t) = exp 
[ 

s(n+ljn - ']O(+)+O($!) zan+ar*@z + l/s) y"+' 

n>3, a> "lz 

(2.7) 

K,+v. (s). As 

(2.5) 

(2.9) 
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In (2.8) the residues are included from the zeros of &, (s) and KS,, (4 respectively, 
in order to satisfy the relations T, (0) = T, (0) =O. The estimate in T, (t) and T2 (t) is 
satisfied uniformly with respect to t for O< t< c-6. 

In short, we obtain the following asymptotic expression, suitable for y>a and t> to, 
for the pressure on the sphere: 

p (t, 1, 9) = T, (t) + T, (t) cos 9 + T, @)(3 COP? 9 - I)/2 + (2.10) 

0 (y-'/z) + 0 (e"fy-I), cc > VI. 

where T,(t)(n = o,t, 2) are given by (2.4), (2.8). 
In addition to (2.10) we can propose another approximate relation /I/, which is obtained 

by piston theory and describes the pressure behaviour in the head part of the sphere during 
a time interval from the instant when incident wave diffraction starts: 

(2.11) 

3. Numerical inversion of the Laplace transform. Our method is based on direct 
evaluation of the inversion integral 

where P* hi,cp) is given by (1.4). 
All the poles of p*(s,i,rp) are in the left half-plane E<o of 

z the s plane (except for the one pole at S= 0); some of them, being 

D'--*__ 
a - 

complex conjugate, approach the E=O axisasthe parameter Y increases, 
along trajectories shown qualitatively by the broken line in Fig-l. 

'\ In order for the computational method to be suitable for any value of 
71, the contour of integration is ahosen in the form of a step line 

o__** c' 50 5 (continuous in Fig.1): 

ITo - Eof% --704rd% 
s = ffith, 

i 
O<E<So (3.21 

Fig.1 
fir, --b<T, ?>?o 

The parameters & and 70 are aribtrary, and can be chosen so as to shorten the time and 
increase the accuracy. 

Using the form (3.2) of the contour of integration , we can rewrite (3.1) as 

P@,f,9)=I,--I,+I, 

Ii = $- 3 

s 
Re [P(&,+ir, i, 9)ei']dz 

0 
E” 

L = f 
s 

I P* (6 f izo, 1, 9) I egf sin [e (5 f h) + &] dF, 
0 

1, = f 
s 
RB [p* (il. 1, 9)eif'] d% 

r* 

where e ff, + w is the argument of p* (g+ir,1,9). Here we use the fact that 
selfconjugate as a function of s , as follows from (1.4). 

The integrands in I,and 1, are sums of series, and may oscillate and be 
We therefore devised a special adaptive subroutine for computing them, based 

p* is complex 

slow to evaluate. 
on Filon's 

quadrature formula /5/ (adaptive in the sense of automatically determined the size of the 
integrands in such a way that the result satisfies a preassigned accuracy). The subroutine is 
similar to the QUA~Ca subroutine /6/ for evaluating integrals using the Newton-Cotes 
quadrature formula, in which the interpolation polynomial has degree eight. We used the 
QUANC 8 subroutine directly to evaluate I,. 

4. The pressure on the sphere. The time dependence of the pressure in the head part 
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of the coated sphere is shown by the continuous curves of Fig.2 for different values of y. 
For a rigid sphere, when y = 0, the pressure initially falls to the value p=2; whereas 
when y#O, a similar fall is seen only after the pressure reaches a local maximum, before 
which it is increasing from zero. It is interesting that there are marked oscillations of 
the pressure in sufficiently long time intervals, the maxima intheseoscillationsbeingusually 
greater than the initial maximum in the initial period. 

The time dependence of the pressure in the head part of an absolutely rigid sphere (y= 0) 
was earier obtained by a finite-difference approximation of the wave equation; it is shown 
in Fig.30 of /7/, but only up to the instant t = 5, when it is still well below its limiting 
value of unity as t-m. It can be seen from Fig.2 that this value is established in practice, 
and then quite sharply, soon after the instant t= 1+3x/2, when the diffracted wave front 
returns to the head part after travelling round the sphere. 

The curves relevant to the approximate expression (2.11) are shown broken in Fig.2. 
Comparing them with the continuous curves, we seethatthepistontheoryonwhich (2.11) is based 
is reasonably accurate for the initial time interval and continues for some time afterwards to 
give qualitatively correct results , though it cannot predict the serious pressure oscillations 
that then occur. It must be said, however, that the fact of the oscillations follows from 
(2.11), though the exponential factor in (2.11) leads to a monotonic decrease of the oscil- 
lation amplitude. 

I I 
IU 20 t 

2‘ , 

25 50 

Fig.2 Fig.3 

Fig.4 Fig.5 

The calculations by numerical integration (continuous curves) are compared with the 
calculations from asymptotic expression (2.10) (the broken curves) in Fig.3 for the case 
y = 5 (tp = 0). Even with this fairly small value of y the asymptotic expression describes the 
time dependence of the pressure quite well, while with y = 50 it gives virtually the same 
results as numerical integration (we omit the comparison for brevity, see /8/). 

Three terms in (2.10) enable three stages in the time dependence of the pressure to be 
distinguished: the first, lasting for a time of the order of 2y, during which there are oscil- 

lations with amplitude of order i/(2I/$ and with frequency -fry, the second, which lasts 
of order y2, during which there are oscillations of amplitude of order 3/1/2~ and frequency 

-T/P, and the third, which is the longest, of order 2yS, but with oscillations of lower 
amplitude, of order S/(3?) and higher frequency of order 1/V+ The stages can be continued 
further, and if they are assigned the number n, their duration increases as yn, while the 
amplitude of oscillation decreases as y-(n-1)/2 and their frequency increases as JG&Jnly These 
features of the pressure time dependence are confirmed by calculations, notably as shown in 
Fig.3. 

The evolution of the pressure distribution on the sphere is shown as a function of the 
angle 'p in Fig.4 for y = 0,1, and different instants t. For comparison, we also show the 
curve (broken) for a rigid sphere (v = 0), for the instant t = 0,5. The pressure distributions 
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close to the diffracted wave front are clearly qualitatively different. 
In Fig.5 we show curves of the pressure distribution on a sphere with a softer damping 

coating (y = 5) for different instants t. The pressure rise at the point 'p = n, due to 
interaction of waves travelling round the sphere, can prove to be substantial and in some 
cases is more than twice the incident-wave amplitude. 
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STATIONARY VIBRATIONS OF AN ELASTIC HALF-SPACE WITH A 
CIRCULAR CYLINDRICAL CAVITY SUBJECTED TO A PERIODIC LOAD* 

L.A. ALEKSEYEVA 

The problem of the stationary vibrations of an elastic half-space with a 
circular cylindrical cavity subjected to a periodic load along the axis 
is considered to investigate the state of stress and strain of extended 
shallow mining shafts under dynamic effects. The problem is reduced to 
the solution of a system of equations with normal-type determinant by the 
method. of superposition of solutions by using contour integrals of 
Fourier type and Fourier-Bessel series. The question of the existence 
and uniqueness of the solution is examined, and its singularities are 
investigated as a function of the velocity of the moving load or its 
period. It is shown that Rayleigh surface waves occur in the medium for 
velocities above the Rayleigh value. 

1. Formulation of the problem. Let us consider an isotropic elastic half-space 
s<h,h>O with Lam& parameters I,p,p, weakened by a circular cylindrical cavity of radius 
R, R <h (Fig.11, whose axis 02 is parallel to the half-space boundary. We connect a 
cylindrical coordinate system (0, r, 8, 2) to the cylinder axis, whose polar axis coincides 
with the OX axis. A load that is stationary in t and periodic in s acts on the cylinder 
cavity 

u,J = +&JpJ (6) ei(gr-“r) 
(f.1) 

j = r, 8, 2; Er = 1, Eg = e, = i 
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